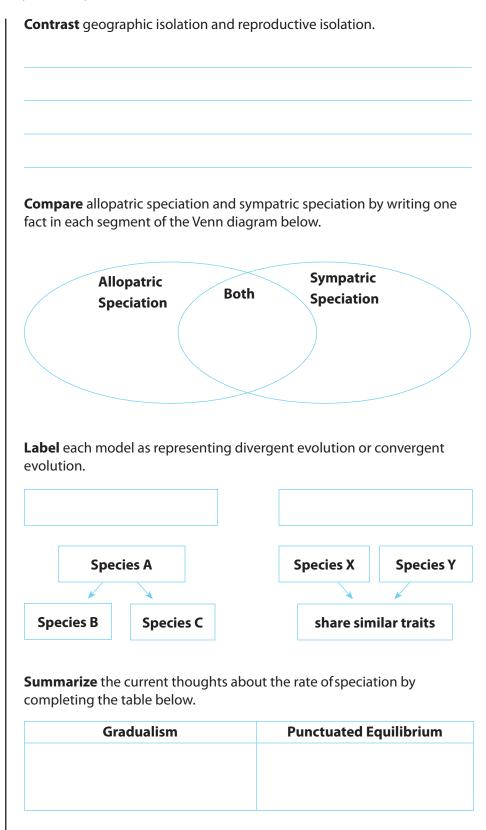

# **15 Evolution**

# 3 Shaping Evolutionary Theory

| 1333 2(C), 3(F), 7(A), 7(B), 7(C),<br>7(D), 7(E), 7(F), 12(A) | MAINIDEA<br>Write the Main Idea for this lesson.                                                     |  |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| <b>Review Vocabulary</b><br>allele                            | Recall the definition of the Review Vocabulary term.<br>allele                                       |  |
| New Vocabulary                                                | Write the correct vocabulary term in the left column for each definition below.                      |  |
|                                                               | allele frequencies remain the same unless acted upon by a factor                                     |  |
|                                                               | random evolution that occurs in a small, separate subpopulation                                      |  |
|                                                               | process of a large population declining in number then rebounding to a large number again            |  |
|                                                               | mechanism that operates before fertilization occurs                                                  |  |
|                                                               | change in the allele frequencies in a population by chance                                           |  |
|                                                               | selection which removes organisms with extreme expressions of a trait                                |  |
|                                                               | mechanism that operates after fertilization occurs to ensure that resulting hybrid remains infertile |  |
|                                                               | selection which shifts a population toward an extreme trait                                          |  |
|                                                               | selection which removes individuals with average traits                                              |  |
|                                                               | change in a trait based on competition for mates                                                     |  |
|                                                               | speciation in the presence of a barrier                                                              |  |
|                                                               | speciation without any barriers                                                                      |  |

## 3 Shaping Evolutionary Theory (continued)


Student Edition, pp. 431–441 Reading Essentials, pp. 176–182



**Compare** natural selection and sexual selection by completing the table.

|                   | Species Changes<br>Based on | Increases Fitness? |
|-------------------|-----------------------------|--------------------|
| Natural selection |                             |                    |
| Sexual selection  |                             |                    |

#### 3 Shaping Evolutionary Theory (continued)



Copyright @ McGraw-Hill Education. Permission is granted to reproduce for classroom use.

Science Notebook • Evolution 218

### 3 Shaping Evolutionary Theory (continued)

#### **REVIEW IT!**

- 1. **MAINIDEA Describe** one new mechanism of evolution that scientists learned after Darwin's book was published.
- 2. Identify three of the conditions of the Hardy-Weinberg principle.

3. Discuss factors that can lead to speciation.

- **4. Indicate** which pattern of evolution is shown by the many species of finches on the Galápagos Islands.
- **5. Apply** what you have learned about gene flow, genetic drift, mutation, and recombination in order to analyze and evaluate their effects.
- **6.** What type of mathematical results would you expect from the experiment you designed above if the two populations diverged only recently?