12 Molecular Genetics

2 Replication of DNA

Copyright ${\scriptstyle \odot}$ McGraw-Hill Education. Permission is granted to reproduce for classroom use.

1115 4(A), 4(B), 5(A)	MAINIDEA Write the Main Idea for this lesson.	
Review Vocabulary	Recall the definition of the Review Vocabulary term.	
template	template	
New Vocabulary	Use your book to define the following terms. Then look through	
semiconservative	the section to find a sentence with each term. Write the sentence.	
DNA polymerase	semiconservative replication	
Okazaki fragment		
	DNA polymerase	
	Okazaki fragment	

Student Edition, pp. 333–335 Reading Essentials, pp. 132–133 **Describe** semiconservative DNA replication.

Model	During replication, the parental strands	The new DNA molecule is composed of
Semiconservative replication		

Sequence and model each step in the replication of a DNA molecule. Write about what happens, and draw a DNA molecule going through each step. In the last box, describe and draw the products of replication.

GET IT? Explain how base pairing during replication ensures that the strands produced are identical to the original strand.

Protein	Stage of DNA Replication	Activity
DNA helicase	unwinding	unwinds and unzips the DNA
DNA ligase		
DNA polymerase		
RNA primase		
Single- stranded binding protein		

Complete the table below on the role of each protein in DNA replication. The first one has been done for you.

Contrast the differences between prokaryotic and eukaryotic DNA replication.

	Eukaryotes	Prokaryotes
Number of origins for DNA replication		
Where replication takes place in the cell		

SUMMARIZE

Analyze how the activity of DNA polymerase is consistent with Watson and Crick's model of semiconservative replication.

REVIEW IT!

- **1. MAINIDEA Indicate** the sequence of the template strand if a nontemplate strand has the sequence 5' ATGGGGCGC 3'.
- 2. **Describe** the role of DNA helicase, DNA polymerase, and DNA ligase.

3. Diagram the way leading and lagging strands are synthesized.

4. Explain why DNA replication is more complex in eukaryotes than in bacteria.

5. If the bacteria *E. coli* synthesize DNA at a rate of 100,000 nucleotides per min and it takes 30 min to replicate the DNA, how many base pairs are in an *E. coli* chromosome?